LogoLogo
  • Nesa Docs
    • Introduction to Nesa
    • Overview of the Nesa System
      • AI Models: Repository, Standardization, Uniformity
      • Users: Why Do We Need Private Inference?
      • Node Runners: Doing Inference and Earning $NES
    • Organization of the Documentation
  • Technical Designs
    • Decentralized Inference
      • Overview
      • Model Partitioning and Deep Network Sharding
      • Dynamic Sharding of Arbitrary Neural Networks
      • Cache Optimization to Enhance Efficiency
      • BSNS with Parameter-efficient Fine-tuning via Adapters
      • Enhanced MTPP Slicing of Topological Order
      • Swarm Topology
      • Additional: Free-Riding Prevention
    • Security and Privacy
      • Overview
      • Hardware Side: Trusted Execution Environments (TEEs)
      • Software/algorithm Side: Model Verification
        • Zero-knowledge Machine Learning (ZKML)
        • Consensus-based Distribution Verification (CDV)
      • Software/algorithm Side: Data Encryption
        • Visioning: Homomorphic Encryption
        • Implementation: Split Learning (HE)
      • Additional Info
        • Additional Info: Trusted Execution Environments (TEEs)
        • Additional Info: Software-based Approaches
    • Overview of $NES
      • $NES Utility
    • The First Application on Nesa: DNA X
    • Definitions
    • Additional Information
      • Dynamic Model Versioning and Fork Management
      • Nesa's Utility Suite
      • The AI Kernel Market
      • Privacy Technology
        • Trusted Execution Environment (TEE)
        • Secure Multi-Party Computation (MPC)
        • Verifiable Random Function (VRF)
        • Zero-Knowledge Proof (ZKP)
      • The Integration of Evolutionary AI to Evolve the Nesa Ecosystem
      • Interoperability and Nesa Future Plans
  • Using Nesa
    • Getting Started
      • Wallet Setup
      • Testnet Nesa Faucet
    • Via Web
      • Your Nesa Account
      • Selecting an AI Kernel
      • Submitting a Query
    • Via SDK
    • Via IBC
    • Via NESBridge
      • On Sei
  • Run a Nesa Node
    • Prerequisites
    • Installation
    • Troubleshooting
    • FAQ
  • Links
    • nesa.ai
    • Nesa Discord
    • Nesa Twitter
    • Nesa dApp: dnax.ai
    • Nesa dApp: DNA X Docs
    • Terms of Service
    • Privacy Policy
Powered by GitBook
On this page
  1. Nesa Docs
  2. Overview of the Nesa System

Node Runners: Doing Inference and Earning $NES

PreviousUsers: Why Do We Need Private Inference?NextOrganization of the Documentation

Last updated 11 months ago

Node runners contribute to the decentralized and distributed nature of Nesa, enhancing its efficiency and security for running AI models. They can be run by individuals, companies, or any other entities interested in supporting the network and earning rewards (which is ) for their efforts.

These nodes support the network by performing several critical functions:

  1. Validation: Nodes validate new transactions and blocks to ensure they follow the network rules. This includes checking that transactions are properly signed and that they do not attempt to spend funds that have already been spent.

  2. Inference: Node runners execute the actual inference task assigned by the orchestrator, where the aggregated results will be returned to the user who request the job.

Want to join as a node runner? See details in .

$NES
run a nesa node