LogoLogo
  • Nesa Docs
    • Introduction to Nesa
    • Overview of the Nesa System
      • AI Models: Repository, Standardization, Uniformity
      • Users: Why Do We Need Private Inference?
      • Node Runners: Doing Inference and Earning $NES
    • Organization of the Documentation
  • Technical Designs
    • Decentralized Inference
      • Overview
      • Model Partitioning and Deep Network Sharding
      • Dynamic Sharding of Arbitrary Neural Networks
      • Cache Optimization to Enhance Efficiency
      • BSNS with Parameter-efficient Fine-tuning via Adapters
      • Enhanced MTPP Slicing of Topological Order
      • Swarm Topology
      • Additional: Free-Riding Prevention
    • Security and Privacy
      • Overview
      • Hardware Side: Trusted Execution Environments (TEEs)
      • Software/algorithm Side: Model Verification
        • Zero-knowledge Machine Learning (ZKML)
        • Consensus-based Distribution Verification (CDV)
      • Software/algorithm Side: Data Encryption
        • Visioning: Homomorphic Encryption
        • Implementation: Split Learning (HE)
      • Additional Info
        • Additional Info: Trusted Execution Environments (TEEs)
        • Additional Info: Software-based Approaches
    • Overview of $NES
      • $NES Utility
    • The First Application on Nesa: DNA X
    • Definitions
    • Additional Information
      • Dynamic Model Versioning and Fork Management
      • Nesa's Utility Suite
      • The AI Kernel Market
      • Privacy Technology
        • Trusted Execution Environment (TEE)
        • Secure Multi-Party Computation (MPC)
        • Verifiable Random Function (VRF)
        • Zero-Knowledge Proof (ZKP)
      • The Integration of Evolutionary AI to Evolve the Nesa Ecosystem
      • Interoperability and Nesa Future Plans
  • Using Nesa
    • Getting Started
      • Wallet Setup
      • Testnet Nesa Faucet
    • Via Web
      • Your Nesa Account
      • Selecting an AI Kernel
      • Submitting a Query
    • Via SDK
    • Via IBC
    • Via NESBridge
      • On Sei
  • Run a Nesa Node
    • Prerequisites
    • Installation
    • Troubleshooting
    • FAQ
  • Links
    • nesa.ai
    • Nesa Discord
    • Nesa Twitter
    • Nesa dApp: dnax.ai
    • Nesa dApp: DNA X Docs
    • Terms of Service
    • Privacy Policy
Powered by GitBook
On this page
  1. Technical Designs
  2. Security and Privacy

Software/algorithm Side: Model Verification

In addition to hardware-level TEE-based solutions for model verification, we will discuss our algorithmic approach to ensure model integrity. In decentralized inference systems, verifying that each node accurately executes the intended model is crucial for maintaining the integrity and reliability of the system. This verification process ensures consistency in inference results across the network, safeguards against malicious modifications of the model, and ensures adherence to privacy protocols and regulatory compliance. Moreover, it optimizes the use of computational resources, preventing wastage on incorrect or unauthorized computations, and helps manage operational costs effectively.

In the following section, we will introduce our use of zero-knowledge machine learning (ZKML) and consensus-based distribution verification (CDV) for model verification.

PreviousHardware Side: Trusted Execution Environments (TEEs)NextZero-knowledge Machine Learning (ZKML)

Last updated 1 year ago