LogoLogo
  • Nesa Docs
    • Introduction to Nesa
    • Overview of the Nesa System
      • AI Models: Repository, Standardization, Uniformity
      • Users: Why Do We Need Private Inference?
      • Node Runners: Doing Inference and Earning $NES
    • Organization of the Documentation
  • Technical Designs
    • Decentralized Inference
      • Overview
      • Model Partitioning and Deep Network Sharding
      • Dynamic Sharding of Arbitrary Neural Networks
      • Cache Optimization to Enhance Efficiency
      • BSNS with Parameter-efficient Fine-tuning via Adapters
      • Enhanced MTPP Slicing of Topological Order
      • Swarm Topology
      • Additional: Free-Riding Prevention
    • Security and Privacy
      • Overview
      • Hardware Side: Trusted Execution Environments (TEEs)
      • Software/algorithm Side: Model Verification
        • Zero-knowledge Machine Learning (ZKML)
        • Consensus-based Distribution Verification (CDV)
      • Software/algorithm Side: Data Encryption
        • Visioning: Homomorphic Encryption
        • Implementation: Split Learning (HE)
      • Additional Info
        • Additional Info: Trusted Execution Environments (TEEs)
        • Additional Info: Software-based Approaches
    • Overview of $NES
      • $NES Utility
    • The First Application on Nesa: DNA X
    • Definitions
    • Additional Information
      • Dynamic Model Versioning and Fork Management
      • Nesa's Utility Suite
      • The AI Kernel Market
      • Privacy Technology
        • Trusted Execution Environment (TEE)
        • Secure Multi-Party Computation (MPC)
        • Verifiable Random Function (VRF)
        • Zero-Knowledge Proof (ZKP)
      • The Integration of Evolutionary AI to Evolve the Nesa Ecosystem
      • Interoperability and Nesa Future Plans
  • Using Nesa
    • Getting Started
      • Wallet Setup
      • Testnet Nesa Faucet
    • Via Web
      • Your Nesa Account
      • Selecting an AI Kernel
      • Submitting a Query
    • Via SDK
    • Via IBC
    • Via NESBridge
      • On Sei
  • Run a Nesa Node
    • Prerequisites
    • Installation
    • Troubleshooting
    • FAQ
  • Links
    • nesa.ai
    • Nesa Discord
    • Nesa Twitter
    • Nesa dApp: dnax.ai
    • Nesa dApp: DNA X Docs
    • Terms of Service
    • Privacy Policy
Powered by GitBook
On this page
  1. Technical Designs
  2. Security and Privacy

Software/algorithm Side: Data Encryption

In the digital age, where data security and privacy are critical, the need to protect user data within decentralized inference systems like Nesa cannot be overstated. As decentralized systems distribute computational tasks across various nodes, each potentially operated by different entities, the risk of exposing sensitive user data during the inference process intensifies. Therefore, ensuring user data's confidentiality and integrity becomes a cornerstone of trust and reliability in such systems. This section discusses our vision and implementation of homomorphic encryption and split learning to achieve this goal.

PreviousConsensus-based Distribution Verification (CDV)NextVisioning: Homomorphic Encryption

Last updated 1 year ago